Exercise 41

(a) In mechanics, the moment \boldsymbol{M} of a force \boldsymbol{F} about a point O is defined to be the magnitude of \mathbf{F} times the perpendicular distance d from O to the line of action of \mathbf{F}. The vector moment M is the vector of magnitude M whose direction is perpendicular to the plane of O and \mathbf{F}, determined by the right-hand rule. Show that $\mathbf{M}=\mathbf{R} \times \mathbf{F}$, where \mathbf{R} is any vector from O to the line of action of \mathbf{F}. (See Figure 1.3.10.)

figure 1.3.10 Moment of a force.
(b) Find the moment of the force vector $\mathbf{F}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$ newtons about the origin if the line of action is $x=1+t, y=1-t, z=2 t$.

Solution

Part (a)
Let θ be the angle between \mathbf{R} and \mathbf{F}.

From the figure,

$$
\sin \theta=\frac{d}{\|\mathbf{R}\|}
$$

which means the perpendicular distance is

$$
d=\|\mathbf{R}\| \sin \theta
$$

According to the definition, the moment M is the magnitude of \mathbf{F} times d.

$$
M=\|\mathbf{F}\| d=\|\mathbf{F}\|\|\mathbf{R}\| \sin \theta
$$

The right side is how the magnitude of the cross product is defined.

$$
M=\|\mathbf{F} \times \mathbf{R}\|=\|\mathbf{R} \times \mathbf{F}\|
$$

Since the vector moment's direction is perpendicular to the plane containing \mathbf{R} and \mathbf{F}, the cross product of \mathbf{R} and \mathbf{F} will give the correct direction.

$$
\mathbf{M}= \pm(\mathbf{R} \times \mathbf{F})
$$

To follow the right-hand corkscrew rule, the positive sign is chosen.

$$
\mathbf{M}=\mathbf{R} \times \mathbf{F}
$$

Part (a)

The moment M is the magnitude of \mathbf{F} times the perpendicular distance from the origin to the line of action. The magnitude of $\mathbf{F}=(1,-1,2)$ is

$$
\|\mathbf{F}\|=\sqrt{1^{2}+(-1)^{2}+2^{2}}=\sqrt{6} .
$$

The distance from the origin to the line of action $(x=1+t, y=1-t, z=2 t)$ is

$$
d(t)=\sqrt{[(1+t)-0]^{2}+[(1-t)-0]^{2}+[(2 t)-0]^{2}}=\sqrt{6 t^{2}+2} .
$$

The minimum of $d(t)$ is the perpendicular distance: $d_{\perp}=\sqrt{2}$. Therefore,

$$
M=\|\mathbf{F}\| d_{\perp}=\sqrt{6} \sqrt{2}=\sqrt{12} .
$$

